Main Article Content


Breast cancer is the second leading cause of death for women everywhere in the world. Since the reason behind the disease remains unknown, early detection and diagnosis is the key challenge for breast cancer control. In this work, mammogram images are initially subject to pre-processing using Laplacian filter for enhancement of tumour regions, Gaussian mixture model, Gaussian kernel FCM, Otsu global thresholding and FCM technique are employed for segmentation. Further, the efficiency of segmentation techniques is analyzed by classifying the samples into benign, malignant and healthy using Gray Level Co-occurrence Matrix (GLCM) features. Linear discriminant analysis classifier is used a combination based on which efficiency used for classification of mammograms. Ensemble methods are evaluated. The efficiency has resulted in better accuracy with the ensemble-based method. The experimentation is conducted in the mini MIAS database of mammograms, and the efficiency of the linear discriminant analyzer is found to be 89.19% for GKFCM, 83.78% with Otsu and 78.38% with FCM method with GLCM features.


CLAHE (Contrast Limited Adaptive Histogram Equalization) Log (Laplacian of Gaussian) GMM (Gaussian Mixture Model; Gray Level Co-occurrence Matrix) Ensemble Based Technique

Article Details

How to Cite
Shobha Rani N, & Chinmayi S Rao. (2019). Exploration and evaluation of efficient pre-processing and segmentation technique for breast cancer diagnosis based on mammograms. International Journal of Research in Pharmaceutical Sciences, 10(3), 2071-2081.