Main Article Content


In our work, we cluster the data collected on pregnancy women through hospitals, into three different categories such as elective LSCS, emergency LSCS and normal delivery. We aim to identify outliers so that we can predict the complications that can occur during pregnancy. These complications can even lead to maternal death. Clustering is performed by the aid of k-means, and k-medoid procedures which are implemented in windows form application to run in Microsoft Visual Studio, a comparison is provided on its performance and efficiency between both the algorithms and also the outlier, i.e. normal delivery cases are detected and depicted. From our work, we can clearly say that K-Means works better when the dataset is between the range of 50 – 100. Suppose the data set is greater than 500 then K-medoid works efficiently. In our work, we are considering various maternity cases. Here we are detecting normal delivery cases as an outlier.


K-means K-medoid Elective LSCS Emergency LSCS

Article Details

How to Cite
Bipin Nair B J, Adarsh C K, Nishin S, Nihar K P, & Shivaranjith P. (2019). A Comparative approach to cluster maternal data using k-means and k-medoid. International Journal of Research in Pharmaceutical Sciences, 10(3), 2038-2043.