Evaluation of antibacterial and antitubercular activities of Cassia fistula Linn root

Channabasappa Hallikeri S1,2, Shrivinas Joshi D2, Venkatrao Kulkarni H2

1Centre for Research and Development, Prist University, Thanjavur, Tamil Nadu 613403, India
2Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T’s College of Pharmacy, Sangolli Rayanna Nagar, Dharwad-580002, Karnataka, India

ABSTRACT

The different extracts of Cassia fistula Linn root were evaluated for antibacterial and antitubercular activities against different Gram-positive, Gram-negative bacterial strains and M. tuberculosis H37Rv strain using ciprofloxacin, norfloxacin and isoniazid as standard drugs, respectively. Alcoholic extract showed significant activity against Bacillus subtilis, while this extract was found to show moderate activity against Escherichia coli. Alcoholic extract also showed good antitubercular activity. The presence of alkaloids and tannins in alcoholic extract could be attributed for the antibacterial and antitubercular activities.

Keywords: Alcohol extract; Antibacterial; Antitubercular; Cassia fistula; Root.

INTRODUCTION

Tuberculosis is a highly infectious disease with about one third of the world’s population including 40% from India estimated to be infected by it (Agarwal, 2004). However, this problem has become serious as Mycobacterium tuberculosis developed resistance against both the first line as well as second line drugs. Along with this, there is an emergence of multi-drug resistant (MDR) and extensively-drug resistant (XDR) strains of M. tuberculosis all over the world including India (Singh, 2007). Medicinal plants offer a great hope to fulfill these needs and have been used for curing diseases for many centuries. These have been used extensively as pure compounds or as a crude material. Only a few plant species have been thoroughly investigated for their medicinal properties (Heinrich et al., 2001).

Cassia fistula Linn. belongs to the family Fabaceae (Basu 2005) a very common plant known for its medicinal properties is a semi-wild Indian Laburnum known as the golden shower. It is distributed in various regions including Asia, South Africa, China, West Indies and Brazil (Prashanth, et al., 2006).

Vernacular names of the plant Cassia fistula are in Kannada-Kakkigida, Hindi-Bandarlathi, Bharva, Suvarnaka, Telagu-Kondrakayi, English-Golden shower (Orwa et al.2009). This plant is found to be used in Ayurvedic system of medicine for its different pharmacological activities viz as, Seeds are used to treat skin diseases, fever, abdominal pain and leprosy. Fruits are also used in treatment of skin diseases, fever, abdominal pain and leprosy (Perry 1980; Markouk et al., 2000). Roots are used to treat cardiac disorders, biliousness, rheumatic condition, haemorrhages, wounds, ulcers and boils, tubercular glands and various skin diseases (Alam. et al.,1990, Asolkar.LV et al.,1992). Literature survey revealed the presence of 7-Methylphyscion, Betulinic acid and ß-Sitosterol, Rhamnetin-3-O-gentiobioside, Tannins, Phlobaphenes, Oxyanthraquinone (Anonymous, 2007, Rastogi, 2004, Chopra, 2006). However, Cassia fistula Linn root has not been investigated for antibacterial and antitubercular activities. Hence, this study was conducted to evaluate the potent bioactive constituents for antibacterial and antitubercular activities in Cassia fistula Linn.

MATERIAL AND METHODS

The root of Cassia fistula Linn was collected from the local areas of Dharwad in Karnataka, and was authenticated by Dr. S. S. Hebbbar, Department of Botany, Government Pre-university College Dharwad. A voucher specimen (No- SETCPD/ Pharmaco/ Herb/2013/14) has been deposited in the Herbarium of Department of Pharmacognosy, S.E.T’s College of Pharmacy, Dharwad, Karnataka.

The Cassia fistula Linn root was shade dried and finely powdered to particle size (#) 40. About 300 g of dried powder was subjected to continuous hot soxhlet exhaustive extraction with petroleum ether, chloroform and ethanol (95%). Aqueous extract was also obtained by cold maceration of the drug (300 g) with 2% chloroform water. After the extraction, the extracts were
filtered and concentrated under reduced pressure using a rota evaporator (Harborn 1984). The yield of petroleum ether, chloroform, ethanol and aqueous extracts was found to be 6.36 g (2.12 % w/w), 5.7 g (1.9 % w/w), 20.49 g (6.83 % w/w) and 21.03 g (7.01 % w/w), respectively. All the extracts were kept in a dessicator for the experiment.

Evaluation of antibacterial activity

The MIC determination of different extracts was carried out simultaneously in comparison with ciprofloxacin, norfloxacin against Gram-positive (Staphylococcus aureus, Staphylococcus faecalis, Bacillus subtilis) and Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa) by broth microdilution method (Jalwa et al., 2012, Villanova 1985). Serial dilutions of all extracts and reference drugs were prepared in Mueller-Hinton broth. Drugs (10 mg) were dissolved in dimethylsulfoxide (DMSO, 1 mL). Further progressive dilutions were done to obtain final concentrations of 0.2, 0.4, 0.8, 1.6, 3.125, 6.25, 12.5, 25, 50 and 100 μg/mL. The tubes were inoculated with 10^3 cfu mL^-1 (colony forming unit/mL) and incubated at 37°C for 18h. The MIC was the lowest concentration of the extracts that yield no visible growth on the plate. To ensure that the solvent had no effect on the bacterial growth, a control was performed with the test medium supplemented with DMSO at the same dilutions.

Evaluation of antitubercular activity

MIC values were determined for the different extracts against M. tuberculosis strain H37Rv using the Microplate Alamar Blue assay (MABA) using isoniazid as the standard drug (Franzblau et al., 1998). The 96 wells plate received 100 μL of Middlebrook 7H9 broth and serial dilution of compounds were made directly on the plate with drug concentrations of 0.2, 0.4, 0.8, 1.6, 3.125, 6.25, 12.5, 25, 50 and 100 μg/mL. Plates were covered and sealed with parafilm and incubated at 37°C for 5 days. Then, 25 μL of freshly prepared 1:1 mixture of alamar blue reagent and 10% Tween 80 was added to the plate and incubated for 24 h. A blue color in the well was interpreted as no bacterial growth and pink color was scored as growth. The MIC was defined as the lowest drug concentration, which prevented color change from blue to pink. The results of antitubercular activity are depicted in Table 2.

RESULTS AND DISCUSSION

The different extracts of Cassia fistula Linn root were screened for antibacterial activity against Gram-positive bacteria: Staphylococcus aureus, Streptococcus faecalis and Bacillus subtilis. Gram-negative bacteria; Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa the results are represented in Table 1. Alcoholic extract of Cassia fistula Linn root has shown significant activity at MIC of 1.6 μg ml^-1 against Bacillus subtilis. Similarly this extract showed moderate activity at MIC of 3.125 μg ml^-1 against Escherichia coli as compared to standard drugs ciprofloxacin and norfloxacin.

Table 1: In vitro antibacterial activity of different extract of Cassia fistula Linn root

<table>
<thead>
<tr>
<th>Compound</th>
<th>MIC values (µg ml^-1)</th>
<th>Gram-positive organisms^a</th>
<th>Gram-negative organisms^b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sa</td>
<td>Sf</td>
</tr>
<tr>
<td>Aqueous Extract</td>
<td></td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Alcohol Extract</td>
<td></td>
<td>25</td>
<td>6.25</td>
</tr>
<tr>
<td>Chloroform Extract</td>
<td></td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Pet-ether Extract</td>
<td></td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>CIP^c</td>
<td>≤1</td>
<td>≤5</td>
<td>≤5</td>
</tr>
<tr>
<td>NOR^d</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
</tr>
</tbody>
</table>

The screening organisms: ^aGram-positive bacteria: Staphylococcus aureus ATCC 11632 (Sa), Streptococcus faecalis ATCC 14506 (Sf), Bacillus subtilis ATCC 60511 (Bs); ^bGram-negative bacteria: Klebsiella pneumoniae ATCC 10031 (Kp), Escherichia coli ATCC 10536 (Ec) Pseudomonas aeruginosa ATCC 10145 (Pa); Reference drugs: ^cCiprofloxacin, ^dNorfloxacin.

Table 2: In vitro antitubercular activity of different extract of Cassia fistula Linn root

<table>
<thead>
<tr>
<th>Compound</th>
<th>MIC values (µg ml^-1)</th>
<th>M. tuberculosis H37Rv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous Extract</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Alcohol Extract</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloroform Extract</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Pet-ether Extract</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Isoniazid</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>
Similarly different extracts of *Cassia fistula* Linn root were screened for antibacterial activity against *M. tuberculosis* strain H$_3$Rv using the Microplate Alamar Blue assay (MABA) and results are represented in Table 2. The alcoholic extract showed good activity at 12.5 µg ml$^{-1}$ as compared to standard drug isoniazid.

Phytochemical investigation of alcoholic extract of *Cassia fistula* Linn root revealed the presence of alkaloids and tannins. Hence, the presence of alkaloids and tannins in alcoholic extract could be attributed for observed significant antibacterial and antitubercular activities (Navneet, K et al., 2009, Oladosu, P et al., 2007). However; research work is under progress to confirm the exact mechanism of action and to elucidate the structure of bioactive principles for the claimed antibacterial and antitubercular activities.

CONCLUSION
The present study confirms antibacterial and antitubercular activities of alcoholic extract of *Cassia fistula* Linn root. However; research work is under progress to confirm the exact mechanism of action and to elucidate the structure of bioactive principles for the claimed antibacterial and antitubercular activities. The present result may form the basis for selection of plant species for further investigation in potent bioactive compounds for antibacterial and antitubercular activities.

ACKNOWLEDGEMENT
The authors are grateful to Mr. H. V. Dambal, President, Dr. T.M.Aminabhavi, Research Director, S.E.T’s College of Pharmacy for providing the necessary facilities to carry the research work. We thank Dr. K.G. Bhat of Maratha Mandal’s Dental College, Hospital and Research Centre, Belgaum, for providing antibacterial and antitubercular activities.

REFERENCES

Agroforestry Database 4.0 (Orwa et al.2009) rajbrikh, Indian laburnum page no 1

Chopra RN, Nayar SL, Chopra IC.*Glossary of Indian Medicinal Plants,* National

Institute of Science Communication and Information Resources, 2006, 54.

Prashanth Kumar, V, Chauhan, NS, Padh, H, Rajani, M, 2006. Search for antibacterial antifungal agents from selected Indian medicinal plants. *J. Ethnopharmacol,* 107,182-188
