Formulation and evaluation of glimepiride loaded liposomes

Subash Chandran M.P* and Pandey V.P

Annamalai University, Annamalai nager, Chidambaram, Tamil Nadu - 608002, India

ABSTRACT

The present study reveals the formulation and evaluation method of Glimepiride loaded liposomes. Glimepiride, a third generation sulfonylureas class drug, for treatment of type 2 diabetes was selected. Rotary film evaporator was employed for the formulation of liposomes by using thin film hydration method. The liposomal formulations of Glimepiride were prepared by using phosphotidyl choline (lecithin) and cholesterol. The prepared liposomal formulations were evaluated for different parameters including refractive index and pH measurement. By the FT-IR and DSC studies revealed that the raw materials used for preparation of liposomes were showing no interaction with the drug Glimepiride. The remarkable variations in the results revealed the dependence on ratio of lecithin to cholesterol. The drug releases at a targeted side can be achieved via liposomes followed by diffusion mechanism.

Keywords: Antidiabetic; Drug entrapment efficiency; Glimepiride; In-vitro release studies; Liposomal formulations; Refractive index; Thin film hydration method.

INTRODUCTION

A remarkable quantity of research is done by researchers in various oral and parenteral formulations to formulate drugs in controlled and sustained release dosage forms. To achieve greater efficacy, minimize toxic effects, effective site specific drug delivery controlled dosage forms plays a greater role when compared to conventional ones (Sahoo SK et al, 2003). Liposomes are microscopic multilamellar structures. They are primed by the mixture of soya lecithin and cholesterol with ensuing hydration using aqueous media (Gabizon A et al, 1998). Liposomes are mostly targeted for delivering drugs in a controlled form for treating various diseases and viral infections. With their slow releasing vehicles, liposomes are known to be used for application of topical drugs (Allen TM, 1997).

For treating patients with type II diabetes mellitus, an oral antidiabetic drug, Glimepiride is commonly prescribed. Glimepiride is a sulfonylureas class drug with molecular formula C24H34N4O5S. The chemical structure of Glimepiride is displayed in the figure 1. The weak acidic drug, Glimepiride, has its pKa value as 6.2. According to the Biopharmaceutical classification System (BCS) Glimepiride has no practical solubility in water and acidic environment but has high permeability (class II) (Hindustan Abdul Ahad et al, 2010). For its oral bioavailability, its poor aqueous solubility is the main constraint. The main aim of this study was to improve the solubility, dissolution property and controlled releasing property of the drug. Using thin film hydration method in a rotary film evaporator liposomes were formulated. The liposomal formulations of Glimepiride were prepared by using phosphotidyl choline (lecithin) and cholesterol.

MATERIAL AND METHODS

Glimepiride was procured from Krebz Healthcare Pvt Ltd (Chennai, India); Lecithin was procured from Mumbai HiMedia Laboratories Pvt Ltd; Cholesterol was procured from Mumbai Thomas Bakers Chemical Ltd. Rest analytical grade ingredients were used. Thin film hydration method was employed for the formulation of Glimepiride liposomes.

* Corresponding Author
Email: subashjr@rediffmail.com
Contact: +91-9843524878
Received on: 09-09-2015
Revised on: 14-09-2015
Accepted on: 16-09-2015

Figure 1: Chemical structure of Glimepiride

Drug-polymer compatibility studies

The drug-polymer compatibility studies were performed using DSC and FT-IR studies. The results showed no drug–polymer interaction.

Preparation of Glimepiride liposomes

Liposomal formulations of Glimepiride were formulated by the technique, thin film hydration method.
Chanda H et al. (2011). Lecithin and cholesterol were dissolved at different ratios in a round bottom flask with organic solvent ether (Sipai ABM et al, 2012). The resultant solution was fitted with rotary film evaporator kept at an angle of 45°. The flasks were rotated for 30 to 40 mins at 100 rpm by passing atmospheric inert air nitrogen. On the wall of round bottom flask, thin dried lipid film was formed. Required quantities of Glimepiride (100 mg) were dissolved in pH 7.4 phosphate buffered saline. The round bottom flask was turned and liquid phase having drug to be entrapped was moved through the side of flask and was slowly returned to upright position. For complete swelling the fluid was passed slowly over non-aqueous layer and flask was left aside for 2h at 37°C. The vesicles are harvested to yield milky white suspension by swirling the contents of the flask followed by centrifugation in a centrifuge. Suitable formula was selected from the different batches of liposomal formulations. By using the above explained common method, the six batches of liposomal formulations were prepared. The various lipid compositions for the preparation of liposomes has been tabulated in Table 1.

Zeta potential and particle size distribution

The globules size in liposomes was found out by using photon correlation spectroscopy. The fluctuations in scattering of light due to Brownian motion of the particles were analyzed using a Zeta sizer (Nano ZS-90, UK). 0.1ml formulation was dispersed in 50 mL distilled water and subsequently mixed and scattering of light was monitored. Zeta potential measurement was done by using a disposable zeta cuvette. The mean diameter/zeta potential ± standard deviation of all determinations was calculated for each sample by multimodal analysis (Behfar Moghaddam et al, 2011).

Liposomal drug entrapment efficiency

Liposomal drug entrapment efficiency of liposomes was found out done by using centrifugation method (Bhalerao SS et al, 2003). The liposomal dispersion (1.0ml) was subjected to centrifugation at 3500 rpm for 90 min. The clear supernatants and non-entrapped Glimepiride were separated and absorbance was noted at 228 nm. With phosphate buffer pH 7.4(100ml), the sediment in the centrifugation tube was diluted and the absorbance of this solution was noted at 228 nm. The additive quantity of Glimepiride in supernatant liquid and sediment gave a total quantity of Glimepiride in liposomal dispersion.

The % of drug entrapped was determined by the formula:

\[
\% \text{drug entrapped} = \frac{\text{Amount of drug in sediment}}{\text{Total amount of drug loaded}} \times 100
\]

Viscosity determination

Brookfield viscometer was used for viscosity determination. The angular velocity of the viscometer was increased gradually from 2 to 50 rpm. Viscosity was obtained by calculating the mean of the two readings. The pH of the formulation was raised to 7.4 by using 0.5 M NaOH by hallipath spindle. By using Brookfield viscometer the rheology of the resultant formulation was studied (Bergman M et al, 1998).

Refractive index and pH measurement

Abbe type refractrometer was used in studying the refractive index of selected formulations. The obvious pH of liposomal formulation was measured by digital pH meter in triplicate at 25±1°C.

In-vitro release study

In-vitro release studies of liposomal formulations of Glimepiride were carried out using standard Franz diffusion cells. An area of 0.75 cm² was selected as diffusion area was and receptor volume was selected as 5.0 ml. After filling the receptor chambers with of PBS (5ml) at pH 7.4, by using small magnetic bars it is stirred continuously. Stir the receptor fluid with a magnetic rotor at 35±0.5°C, which is ocular surface temperature. Separate the both chambers by means of activated dialysis membrane bag with molecular weight 12,000 Da. One milliliters of each formulation were filled into the donor compartment and the chamber was occluded with Paraffin. The withdrawn samples subjected to filtration by using 0.45 µm membrane filter. The drug content analysis was done by UV spectrophotometer at 228 nm (Zhang JA et al, 2005).

In-vitro drug release kinetic studies

To determine the release kinetics of Glimepiride from the liposomal formulations various data from in-vitro release were fixed into different equations and kinetic models. Zero-order equation, Higuchi’s model and Peppas’s models were used as kinetic models. By using the results received in these formulations various model treatment were plotted. i.e. (Higuchi’s) Cumulative percentage release of drug Vs Square root of time and (Peppas) Log cumulative percentage release Vs Log time. The mechanism of drug release of Glimepiride from the liposomal formulation was studied by fitting the drug release data into various mathematical kinetic models (Peschka R et al, 1998).

Determination of mechanism of drug release from liposomal formulations, the in-vitro dissolution data of each liposomal formulation were done with different kinetic drug release equations. Zero order: \(Q=K_{0}t \); Higuchi’s square rate at time: \(Q=K_{0}t^{1/2} \) and Peppas: \(F=K_{n}t^{n} \), where \(Q - drug \) release amount at time \(t \), \(F - drug \) release fraction at time \(t \), \(K_{0} - zero \) order kinetic drug release constant, \(K_{n} - Higuchi's \) square root of time kinetic drug release constant, \(K_{m} - constant \) incorporating geometric and structural characteristic of the tablets and \(n \) - the diffusion exponent indicative of the release mechanism. The correlation coefficient values (r) from Higuchi’s model point out the kinetic of drug...
release and diffusion exponent values \((n)\) from Peppas model point out the mechanism of drug release.

RESULTS AND DISCUSSION

From the various methods for the formulation of liposomes, thin film hydration method was chosen for the production of Glimepiride liposomes. The liposomal formulations of Glimepiride were prepared by using phosphotidyl choline (lecithin) and cholesterol with different ratios.

The spectra obtained from the FT-IR and DSC studies proved the lipids and API were compatible. The size of globules in liposomes was calculated by photon correlation spectroscopy using a Zeta sizer. The zeta potential and particle sizes of liposomes are ideal. Based on
From the drug entrapment efficiency results, it is clear that drug entrapment efficiency of liposomal formulations is reduced with the lowering of concentration of lecithin. This is because of the fact that low lecithin content provides less drug entrapment efficiency. The ability of formulation to withstand drug molecules in the bilayer membrane of the vesicles was proves the encapsulation efficiency of liposomal formulations. Cholesterol increases the fluidity property of the bilayer membrane and improves the retainability of bilayer membrane in the presence of biological fluids. From the percentage of drug entrapped results it was found that with the increase in the percentage of cholesterol the stability and rigidity of liposomes was successively increased but at the same time percentage drug entrapment reduced with the reduction in Lecithin. The prepared liposomal formulations also evalu- ated for viscosity refractive index and pH measurement. The obtained results were tabulated in the table 3.

In-vitro dissolution study performed was by using standard Franz diffusion cells. The release profile of the all prepared nanoemulsions formulations are presented in the figures 2 to 5. The maximum percentage of Glimepiride release was observed in the formulation L4. As expected for the liposomes, fast drug release behavior was observed due to the enhanced dissolution and forming of the lipid vesicles as much as smaller in size of the vesicles. Distinguishable differences

Table 2: Mean droplet size and zetapotential measurement

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Mean droplet size (nm±SD)</th>
<th>Zeta potential (mV±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>24.82±2.324</td>
<td>-21.33±0.106</td>
</tr>
<tr>
<td>L2</td>
<td>37.64±2.387</td>
<td>-41.32±0.442</td>
</tr>
<tr>
<td>L3</td>
<td>23.21±3.783</td>
<td>-28.77±0.602</td>
</tr>
<tr>
<td>L4</td>
<td>10.08±1.132</td>
<td>-37.83±0.934</td>
</tr>
<tr>
<td>L5</td>
<td>27.82±2.126</td>
<td>-40.13±0.231</td>
</tr>
<tr>
<td>L6</td>
<td>23.64±1.642</td>
<td>-37.37±1.154</td>
</tr>
</tbody>
</table>

Table 3: Viscosity, refractive index, pH measurement and Drug entrapment efficiency

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Viscosity (cps)</th>
<th>Refractive index</th>
<th>pH</th>
<th>Drug entrapment efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>8.18±1.01</td>
<td>1.471±0.001</td>
<td>6.6±0.04</td>
<td>98.24</td>
</tr>
<tr>
<td>L2</td>
<td>8.14±0.96</td>
<td>1.469±0.003</td>
<td>6.7±0.02</td>
<td>97.56</td>
</tr>
<tr>
<td>L3</td>
<td>8.31±0.99</td>
<td>1.465±0.003</td>
<td>6.6±0.03</td>
<td>98.87</td>
</tr>
<tr>
<td>L4</td>
<td>8.23±0.91</td>
<td>1.472±0.002</td>
<td>6.6±0.06</td>
<td>98.98</td>
</tr>
<tr>
<td>L5</td>
<td>7.84±1.21</td>
<td>1.469±0.002</td>
<td>6.6±0.04</td>
<td>87.64</td>
</tr>
<tr>
<td>L6</td>
<td>7.96±1.18</td>
<td>1.467±0.001</td>
<td>6.7±0.05</td>
<td>87.21</td>
</tr>
</tbody>
</table>

Figure 4: Peppa’s plot of L1-L6
were observed in the other liposomal formulations. The in-vitro dissolution data of each formulation were calculated with different kinetic drug release equations to determine the mechanism of drug release from hydrophilic matrices. The kinetics of drug release were by the correlation coefficient values (r) from Higuchi’s mode and diffusion exponent values (n) from Peppa’s model indicate the mechanism of drug release. Different release mechanisms and the diffusion characteristics were characterised by using the n value of all formulations and were tabulated in the table 4.

CONCLUSION

Glimepiride liposomes were successfully prepared by using different ratios of lecithin and cholesterol. The method employed for the preparation of liposomal formulations is lipid thin film hydration method and the equipment used was rotary film evaporator. Liposomes are somehow stable system for the targeted drug delivery. The size and size distribution analysis was carried out on selected formulations. The viscosities, refractive index, pH and drug entrapment efficiencies of the optimized formulations were determined. In-vitro dissolution study was performed by using standard Franz diffusion cells. Distinguishable differences were observed in all liposomal formulations. The maximum percentage of Glimepiride release was observed in the formulation L4. From the research it was concluded that the Glimepiride is one of the good candidate for the successful development of liposomes for its therapeutic activity.

REFERENCES

Behfar Moghaddam, Sarah E. McNeil, Qinguo Zheng, Afzal R. Mohammed, Yvonne Perrie, Exploring the Correlation Between Lipid Packaging in Lipoplexes and Their Transfection Efficacy, Pharmaceutics 2011, 3; 848-864.

Gabizon A, Goren D, Cohen R, Barenholz Y. Development of liposomal anthracyclines: from basics to clin-

Hindustan Abdul Ahad, Sreeramulu J, Hima Bindu V. Design and evaluation of sustained release matrix tablets of Glimepiride based on combination of natural and synthetic polymers, IJABPT. 2010, 1(3) 770-777.

Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. DDT 2003, 8:24.
