Effect of esculetin on the expression pattern of apoptotic markers in experimental oral carcinogenesis

Selvasundaram R1, Manoharan S*, Murali Naidu R2, Vasudevan K3, Elanchezhiyan C3, Muthulingam M3

1Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
2Department of Oral & Maxillofacial Pathology, Rajah Muthiah Dental College & Hospital, Annamalai University, Annamalainagar, Tamil Nadu, India
3Department of Zoology Annamalai University, Annamalainagar, Tamil Nadu, India

ABSTRACT

Evasion of apoptosis has been recognized as one of the salient features of the tumour cell. The programmed cell death is regulated by a spectrum of apoptotic proteins, which include both pro-apoptotic and anti-apoptotic markers. The aim of the present study is to explore the apoptotic induction potential of esculetin by analysing the expression pattern of apoptotic markers in 7,12-dimethylbenz(a)anthracene (DMBA) - induced oral carcinogenesis. Tumours were developed in the hamster’s buccal mucosa using a site-specific carcinogen, DMBA [topical application, 3 times a week for 14 weeks]. While the buccal mucosa from the hamster treated with DMBA alone (tumour bearing hamster) exhibited abnormal pattern of apoptotic markers (p53, Bcl-2, Bax, caspase 3 and caspase 9), the expression pattern was found to be reverted to near normal pattern in DMBA+ esculetin treated hamster’s buccal mucosa. The present results thus reveal the esculetin ability to induce apoptosis in DMBA-induced hamster buccal pouch carcinogenesis.

INTRODUCTION

Extensive studies highlighted the putative role of the natural products in the prevention of several illnesses including cancer. The major phytochemical constituents of natural products include flavonoids, terpenoids, polyphenols and isothiocyanate (Batra and Sharma, 2013). The mechanism of action of these bioactive principles in several types of cancer has been well documented. Accumulating research studies explored the anticancer effect of various medicinal plants and their active constituents via their apoptotic efficacies (Wang et al., 2012). Many bioactive constituents that explored apoptotic induction potential were tested for their anticancer efficacy in pre-clinical and clinical trials as well (Singh et al., 2016; Pan et al., 2012). The major goal of the present study is to explore a non-toxic and less side effect phytoconstituent for the treatment of cancer.

In recent years, numerous studies documented the molecular pathogenesis of oral carcinogenesis by analysing the spectrum of biomarkers in the tumour tissues (Santosh et al., 2016). Investigation of the expression pattern of molecular markers in carcinogenesis would provide an insight into the tumour behavior and its aggressiveness (Bhatt et al., 2010). p53 has been well pointed out as a key signalling molecule in the programmed cell death and cell arrest in response to DNA damage (Pietsch et al., 2008). p53 has also been regarded as a “Molecular policeman” and “Guardian of the genome”
(Efeyan and Serrano et al., 2007). p⁵³ is one of the major tumour suppressor genes and plays a pivotal role in the regulation of cell division. Due to its crucial role in the cell cycle regulation, it is regarded as a mainstay of intrinsic anticarcinogenic defence mechanism (Oren and Rotter et al., 2010). The tumour suppressor gene p⁵³ has been recognized as a target gene for gene therapy and has been pointed out as a first molecular indicator of carcinogenic process (Rivlin et al., 2011). The tumour suppressor gene p⁵³ has been recognized as a target gene for gene therapy and chemotherapy due to its over expression in cancerous tissues (Hientz et al., 2017). Mutant p⁵³ protein over expression has been pointed out as a first molecular indicator of carcinogenic process (Rivlin et al., 2011). Shin et al (1996) pointed out that p⁵³ expression has a prognostic significance in identifying oral cancer recurrence and secondary primary tumours. p⁵³ functional status has been considered as a valuable predictor for chemotheraphy response.

The anti-apoptotic protein Bcl-2 is a 26 kDa protein found in the nuclear envelope, outer mitochondrial membrane and endoplasmic reticulum (Tzifi et al., 2012). Bcl-2, B - cell lymphoma -2, has been recognized as a primary regulator of programed cell death. Bcl-2 serves as an anti-apoptotic protein, by inhibiting apoptosis and by promoting the survival of damaged cell (Montero and Letai et al., 2018). Bcl-2, a membrane associated protein, was found to be over expressed in several cancers including oral carcinoma (Manimaran et al., 2017). Bcl-2 family, consist of at least 15 proteins both apoptotic and anti-apoptotic members, are found in basal and proliferating cells (Arya et al., 2016).

The over expression of Bcl-2 was shown in oral dysplastic lesions as well. Bax, a pro-apoptotic gene, plays a vital role in the apoptotic cell death in cooperation with p⁵³ and by inhibiting the effect of Bcl-2 (Hata et al., 2015). Manoharan et al., (2011) reported decreased expression of Bax in experimental oral carcinogenesis. The caspases, cysteine rich proteases, are categorised into three groups such as initiator caspases, effector caspases and inflammatory caspases. The proteolytic cleavage of pro-caspases results in active caspases (Elliott et al., 2009). The caspases 8, 9 and 3 have pivotal functions in the apoptotic pathway. Caspase 9 has been involved in cell disassembly in response to agents that triggers cytochrome c release from mitochondria (Reiners et al., 2002). Caspase 3 stimulates caspases 8 and 9 initiator signals in to full-fledged commitment to disassembly. Abnormalities of in the status of caspase-3 and 9 have been documented in various cancers including oral carcinogenesis (Parrish et al., 2013). The present study has thus investigated the modulating effect of esculetin on the expression pattern of apoptotic markers in DMBA induced oral carcinoma.

MATERIALS AND METHODS

The present experimental design categorized the 24 experimental hamsters, procured from National Institute of Nutrition, Hyderabad, into four groups. Each experimental group consists of six hamsters. The experimental design strictly followed the principles of institutional animal ethical committee (CPCSEA Reg. no: 160/1999), Annamalai University and the animals were housed and maintained in the Central Animal House, Annamali University. The experimental design is depicted in the figure 1.

Molecular markers analysis

The expression patterns of p53 in the buccal mucosa of the experimental hamsters were analyzed using Western blotting as described earlier (Manimaran et al., 2018). Briefly, proteins that are separated in the gel electrophoresis were transferred to nitrocellulose membrane. The membrane was then treated with corresponding primary antibodies (p⁵³, caspase 3 and 9), followed by horseradish peroxidase labelled secondary antibodies. Then, the substrate, daminobenzidine, was added and the band obtained were densitometerically analysed. The immunoexpression pattern of Bax and Bcl-2 was examined as per the method described earlier (Rajasekaran et al., 2012). Briefly, the antigen retrieved slides were incubated with primary antibodies (Bax and Bcl-2) followed by incubation with horseradish peroxidase labelled secondary antibodies. The substrate, diaminobenzidine, was then added and was viewed under microscope when acceptable colour intensity was attained.

STATISTICAL ANALYSIS

The statistical significance between the experimental groups was analyzed using One way analysis of variance followed by Duncan’s Multiple Range Test. The differences between two groups are considered statistically significant if the p values were found to be less than 0.05.

RESULTS

The present study noticed an abnormal status of apoptotic proteins in the buccal mucosa of hamsters treated with DMBA alone. While Bcl-2 was over expressed, Bax protein expression pattern was decreased in the buccal mucosa of tumour bearing hamsters (Immunohistochemistry Figures 2 and 3). The expression pattern of p⁵³, caspase 3 and 9 were found to be downregulated (Western blotting; Figures 4 and 5) in hamsters treated with DMBA alone as compared to vehicle treated control hamsters. Esculetin administration (50 mg/kg
bw) orally to hamsters treated with DMBA restored the expression pattern of above said molecular markers to near normal pattern.

DISCUSSION

Apoptotic disruption has a major impact on neoplastic phenotype and thus dysregulation in the apoptotic pathway or the expression pattern of apoptotic genes would result in tumour progression. Profound studies highlighted that the cytotoxic anticancer drugs mediate their therapeutic effects via apoptotic induction (Liu et al 2017). Previous studies have also documented the apoptotic induction efficiency of various natural products and synthetic constituents (Manoharan et al.,...
The present study focuses the apoptotic potential of esculetin in experimental oral carcinogenesis. 7,12-dimethylbenz(a)anthracene, a potent carcinogenic agent, is commonly used to develop tumors at various organs including oral cavity, skin and mammary gland (Hassan et al., 2014). DMBA induced apoptotic abnormality has been well documented. In the present study, dysregulation in the expression pattern of p53, Bcl-2, Bax, caspase 3 and 9 was noticed in the buccal mucosa of the hamsters treated with the DMBA alone. A spectrum of check points are involved in monitoring the cell growth by regulating the cell cycle arrest or its progression during the cell cycle (Barnum and O’Connell, 2014). Dysregulation of p53 expression would lead to various pathological disorders including cancer. More than 50% of human carcinoma showed p53 mutations. p53 mutation would lead to genomic instability and abnormal cell division (Yasutis and Kozminski, 2013). Bai et al (2015) reported that the abnormal proliferation of squamous cell carcinoma cells could be due to defective p53 dependant pathway. Li et al., (2015) demonstrated over expression of p53 in the cells adjacent to oral cancer cells. In most of the cancer,
p53 mutation or its inactivation has been regarded as the key event. p53 triggers cytochrome c release via binding with Bcl-2 to induce apoptosis. Weissmueller et al (2014) reported that missense mutation in p53 gene promotes the metastasis pancreatic cancer. Wild type p53 has been shown to inhibit the proliferation and survival of precancerous cells (Chen et al., 2015). Singh et al (2016) reported a spectrum of p53 mutation in oral cancer patients from Gujarat, India. They suggested that the assessment of p53 mutation could serve as a valuable indicator of early stage loco-regional recurrence among patients with oral carcinoma. Yang et al., (2013) have shown the p53 mediated apoptosis in oral cancer OC2 cells.

Cabrera Ortega et al., (2016) showed over-expression of Bcl-2 in 4-nitroquinoline-1-oxide induced oral carcinogenesis. A large number of studies pointed out Bcl-2 as a prognostic marker in several carcinogenesis including oral carcinoma (Arumugam et al., 2017). Arya et al., (2016) demonstrated the correlation between Bcl-2 expression and prognostic significance in oral carcinogenesis and cancerous conditions. Bcl-2 abnormal expression was shown in oral, skin, colon and mammary cancer. Ramezani et al., (2017) suggested that analysing Bcl-2 expression could be helpful to distinguish skin squamous cell carcinoma and basal cell carcinoma. Gulati et al., (2017) has shown a gradual increase in the Bcl-2 expression pattern from stage I to stage IV of oral cancer patients. Bcl-2 overexpression facilitates the conversion of damaged mutated cells to malignant phenotype by favouring their cell survival (Kirklin et al., 2004).

Numerous studies clearly pointed out that the survival or death of the cells are determined by Bcl-2/Bax ratio. Bcl-2 up-regulation and Bax down-regulation were reported in the tumour tissues of several cancers including oral cancer (Placzek et al., 2010). It is well documented that caspases have significant contribution in the biochemical and morphological alterations during programmed cell death. Caspase 3 is one of the major executioner caspases involved in the DNA fragmentation and disassembly of the cell by targeting the structural substrates (Fuchs and Steller, 2011). The activated caspases are involved in the induction of apoptosis of several structural and functional proteins. The absence of caspase 3 was shown in the tumours tissues of the breast, liver and prostate (McIlwain et al., 2015). It has been demonstrated that several anticancer drugs induced apoptosis via caspase 3 and 9 activation (Jäger and Zwacka, 2010).

Oral administration of esculetin at a dose of 50mg/kg bw corrected the abnormalities of the above markers expression pattern during DMBA induced oral carcinogenesis (Witaicenisi et al., 2013). A large number of in vitro studies demonstrated the pro-apoptotic potential of esculetin in cancer cell lines (Karandikar and Thangarajan, 2017). Wang et al., (2015) suggested that the anticell proliferative efficacy of esculetin is due to its ability to initiate mitochondrial mediated, caspase-
dependant apoptotic pathway in cancer. Kim et al., (2015a; and 2015b) reported that esculetin stimulated the process of apoptosis in human colon cancer cells through induction of endoplastic reticulum stress and via ROS - mediated mitochondrial apoptotic pathway. It has been reported that esculetin might have induced apoptosis via down regulating Sp1 protein in human malignant melanoma cells [Jeon et al, 2015]. Bcl-2 over expression blocking and activation of JNK and ERK has been considered as the major mechanism for the esculetin’s apoptotic efficacy in human leukemia cells [Park et al, 2008]. Chu et al., (2001) proposed that the apoptotic efficacy of esculetin is probably due to its ability to enhance the cytosolic translocation of cytochrome c. Yang et al., (2010) pointed out ROS-mediated mitochondrial dysfunction pathway as a major mechanism for the apoptotic potential of esculetin.

CONCLUSION

The present study demonstrated the apoptotic efficacy of esculetin in vivo using DMBA-induced hamster buccal pouch carcinogenesis. Esculetin modulated the expression of apoptotic markers in favour of tumour suppression in DMBA treated hamsters. Esculetin up-regulated the expression of pro-apoptotic proteins p53, Bax, Caspase 3 and 9 and down-regulated Bcl-2 expression in hamsters treated with DMBA. The observed findings thus suggest that the apoptotic potential of esculetin is attributed to its ability to maintain the Bcl-2/Bax ratio and by inducing the expression of p53, caspasases 3 and 9.

ACKNOWLEDGEMENT

Financial assistance from Indian Council of Medical Research, New Delhi to Mr.R.Selvasundaram, in the form of ICMR-SRF, is gratefully acknowledged. The authors gratefully acknowledge UGC-SAP and DST-FIST support in the form of providing necessary infrastructural facilities to carry out the work successfully.

REFERENCES

Pan, L., Chai, H.B., Kinghorn, A.D. 2012. Discovery of new anticancer agents from higher plants. Front Biosci (Schol Ed), 4: 142-56.

Placzek, W.J., Wei, J., Kitada, S., Zhai, D., Reed, J.C., Pellechica, M. 2010. A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types...
provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis. 1: e40.

