Total antioxidant potential of selected indigenous plants and culinary spices

Lakshmana Swamy P1, Prasad VGNV2, Vamsi Krishna B2, Srinivasa Rao T2, Cyril Arun Kumar L4 and Rao GS2

1Department of Biotechnology, Acharya Nagarjuna University, Guntur-522510, Andhra Pradesh, India
2Department of Veterinary Pharmacology and Toxicology, NTR College of Veterinary Science, Gannavaram-521102, Andhra Pradesh, India
3Department of Veterinary Public Health and Epidemiology, N.T.R. College of Veterinary Science, Gannavaram-5221102, Krishna District, Andhra Pradesh, India
4Department of Zoology, VSR and NVR College, Tenali, Guntur District, Andhra Pradesh, India

ABSTRACT

The total antioxidant activity of selected indigenous plants and culinary spices was determined in vitro by phosphomolybdenum method. The antioxidant activity of each extract was expressed as ascorbic acid equivalents. Among the spices tested, Illicium verum (hook fruit) revealed strongest antioxidant potential followed by Cinnamomum zeylanicum, Bl. (Bark), Pimpinella anisum (seed), Myristica fragrans Houtt (seed), Terminalia chebula, Retz. (seed), Mentha piperata (leaf), Cuminum cyminum, L. (Seed) and Nigella sativa, Linn (seed). All the tested spices have exhibited greater antioxidant potential than that of ascorbic acid except for some concentrations of Mentha piperata (leaf), Cuminum cyminum, L. (Seed) and Nigella sativa, Linn (seed). Among the indigenous plants, antioxidant potential observed were in the following descending order: Amaranthus gangeticus (leaf), Gloriosa superba, L. (Tubers), Mangifera indica, L., Achyranthes aspera, L. (whole plant), Calotropis gigantea, R. Br. (Leaf) and Sesbania grandiflora, L. Pers (Leaf). The present study revealed that the tested plants could be used as natural sources of antioxidants or as nutritional supplements to counter the deleterious effects of the oxidative stress.

Keywords: Ascorbic acid; Culinary spices; indigenous plants; Oxidative stress; Total antioxidant activity

INTRODUCTION

During the process of oxygen utilization in normal physiological and metabolic processes, approximately 5% of oxygen gets reduced to oxygen derived free radicals like superoxide, hydrogen peroxide, hydroxyl and nitric oxide radicals. All these radicals were known as reactive oxygen species (ROS) that exert oxidative stress (Lata and Ahuj, 2003). In living organisms, the oxidative stress is confronted by antioxidative enzymes, reduced glutathione, vitamins, pigments, phenols and polyphenols (Bahadori and Yazdani-Biuki., 2003). When generation of ROS overtakes the antioxidant defenses of the body, the free radicals start attacking the proteins, lipids and carbohydrates of the cell (Yu et al., 1994; Campbell and Abdulla,, 1995; Cotran et al., 1999) and this is implicated in the pathogenesis of inflammation, cardio-vascular diseases, diabetes, cancer, neurological disorders, and in the process of aging (Tsa et al., 2004; Losso et al., 2007). Therapy using free-radical scavengers or antioxidants has the potential to prevent, delay or ameliorate many of these disorders (Delanty and Dichter, 2000).

Synthetic antioxidants, such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), are well known for their ability to stop the chain reactions of lipid peroxidation (Escobar et al., 1995). There is increased evidence that indigenous antioxidants may be useful in preventing the deleterious consequences of oxidative stress by protective biochemical functions of natural antioxidants contained in spices, herbs and medicinal plants (Noda et al., 1997). In recent times, research on the extraction of natural antioxidants that would be less toxic and more effective than the commonly applied synthetic antioxidants to fight the so-called “oxidative stress”, is gaining momentum (Bahadori and Yazdani-Biuki., 2003). Hence, the present study was undertaken to explore the antioxidant potential of some commonly used indigenous plants and culinary spices.

MATERIALS AND METHODS

Plant Material Collection and Authentication

Culinary spices viz. Cinnamomum Zeylanicum Bl. (bark), Cuminum cyminum L.(seed), Illicium verum (hook fruit), Mentha piperata (leaf), Myristica Fragrans, Houtt.(seed), Nigella sativa Linn. (seed), Pimpinella anisum L. (seed), Terminalia chebula Retz. (seed) and indigenous plants viz. Achyranthes aspera L. (whole

ISSN: 0975-7538

* Corresponding Author
Email: prasadgmv@gmail.com
Contact: +91-9866831501
Received on: 14-07-2013
Revised on: 23-03-2014
Accepted on: 28-03-2014
plant), *Amarantus gangeticus* Linn (leaf), *Calotropis gigantea* R. Br. (tubers), *Gloriosa superba* L. (tubers), *Mangifera indica* L. (seed kernel), and *Sesbania grandiflora* L. Pers (Leaf) were brought from local sources. The plant materials were identified and authenticated by the Department of Botany, Vemulapalli Kodanda Ramaiah College, Buddhavaram, Gannavaram Mandal, Krishna District, Andhra Pradesh, India.

Extraction procedure

Shade dried plant parts were reduced to fine powder and 10g of powder was taken into a 250 ml conical flask and 100 ml of acetone was added. After thorough mixing the flask was kept on a rotary shaker at 190–220 r/min for 24 hours and it was filtered with whatman filter paper No.1. The filtrate was evaporated until dry in a water bath at 80°C. The stock solution of crude extracts (10mg/ml) was prepared by dissolving a known amount of dry extract in DMSO. Ascorbic acid stock solution (1 mg/ml) was prepared in distilled water. The working solutions (20, 40, 80 and 160 µg/ml) of the extracts and ascorbic acid were prepared from the stock solution using suitable dilution.

Chemicals

Acetone (sd fine-chemicals Limited, Mumbai, India); Ammonium molybdate (Thermo fisher scientific India Pvt. Ltd., Mumbai, India); Dimethyl sulfoxide (DMSO), Disodium hydrogen phosphate and Sulfuric acid (Merck Specialties Private Limited, Mumbai, India).

METHODS

Phosphomolybdenum antioxidant assay

The total antioxidant activity of the extracts was evaluated by the phosphomolybdenum assay method (Prieto, et al., 1999). It was based on the reduction of Mo (VI) to Mo (V) by the extract and subsequent formation of a green phosphate-Mo (V) complex in acidic condition. Three hundred micro liters of extract was combined with 3ml of reagent solution (0.6M sulfuric acid, 28mM sodium phosphate and 4mM ammonium molybdate). The reaction mixture was incubated at 95°C for 90min. Then, the absorbance of the solution was measured at 695nm using a UV-visible spectrophotometer against a blank (0.3ml DMSO + 3ml reagent) after cooling to room temperature. The total antioxi-

<table>
<thead>
<tr>
<th>Extract</th>
<th>Concentration</th>
<th>20 µg/ml</th>
<th>40 µg/ml</th>
<th>80 µg/ml</th>
<th>160 µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.zeylanicum</td>
<td>66.0346 ± 1.00</td>
<td>85.0906 ± 1.22</td>
<td>132.2542 ± 1.88</td>
<td>208.1606 ± 2.66</td>
<td></td>
</tr>
<tr>
<td>C. cyminum</td>
<td>16.3302 ± 1.56</td>
<td>27.7236 ± 1.62</td>
<td>51.5838 ± 1.66</td>
<td>87.7902 ± 1.78</td>
<td></td>
</tr>
<tr>
<td>I. verum</td>
<td>95.5714 ± 1.55</td>
<td>166.7138 ± 2.20</td>
<td>279.4618 ± 3.23</td>
<td>440.485 ± 3.88</td>
<td></td>
</tr>
<tr>
<td>M. piperata</td>
<td>40.309 ± 1.55</td>
<td>49.6782 ± 1.90</td>
<td>62.3822 ± 2.02</td>
<td>79.3738 ± 2.64</td>
<td></td>
</tr>
<tr>
<td>M. fragrans</td>
<td>45.073 ± 1.03</td>
<td>62.2234 ± 1.24</td>
<td>100.1766 ± 1.36</td>
<td>166.3962 ± 1.87</td>
<td></td>
</tr>
<tr>
<td>N. sativa</td>
<td>27.9226 ± 0.10</td>
<td>28.0814 ± 0.31</td>
<td>38.2446 ± 0.44</td>
<td>54.601 ± 0.83</td>
<td></td>
</tr>
<tr>
<td>P. anisum</td>
<td>37.927 ± 1.61</td>
<td>67.7814 ± 1.88</td>
<td>122.7262 ± 2.87</td>
<td>212.7658 ± 3.02</td>
<td></td>
</tr>
<tr>
<td>T. chebula</td>
<td>58.2534 ± 1.13</td>
<td>73.9746 ± 1.29</td>
<td>87.3138 ± 1.57</td>
<td>118.7562 ± 1.80</td>
<td></td>
</tr>
</tbody>
</table>

Values are Mean ± SD, (n=3)
Means with different alphabets as superscripts in a column differ significantly (P<0.05)

Table 3: Total antioxidant activities of acetone extract of indigenous plants expressed as ascorbic acid equivalents

<table>
<thead>
<tr>
<th>Extract</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 µg/ml</td>
</tr>
<tr>
<td>A. aspera</td>
<td>9.2302 ± 1.16*a</td>
</tr>
<tr>
<td>A. gangeticus</td>
<td>39.0402 ± 1.55*d</td>
</tr>
<tr>
<td>C. gigantean</td>
<td>8.4128 ± 0.25*b</td>
</tr>
<tr>
<td>G. superba</td>
<td>22.3302 ± 0.25*c</td>
</tr>
<tr>
<td>M. indica</td>
<td>18.206 ± 0.25*b</td>
</tr>
<tr>
<td>S. grandiflora</td>
<td>10.2958 ± 0.55*c</td>
</tr>
</tbody>
</table>

Values are Mean ± SD, (n=3)
Means with different alphabets as superscripts in a column differ significantly (P< 0.05)

RESULTS

The absorbance values at various dilutions of the standard antioxidant ascorbic acid were presented in Table 1 and standard calibration curve was presented Fig 1. The total antioxidant activity of culinary spices and indigenous plants at different dilutions was presented as ascorbic acid equivalents in Table 2 and 3 respectively. Among all the culinary spices tested, *Illicium verum* (hook fruit) revealed strongest antioxidant potential at all the dilutions tested, followed by *Cinnamomum zeylanicum*, *B. (Bark)*, *Pimpinella anisum*
DISCUSSION

The human body possesses many defense mechanisms against oxidative stress, including enzymatic and non-enzymatic compounds. Under certain circumstances, the natural antioxidant mechanisms become insufficient and the excess of free radicals may damage the structure and function of the cell membrane in a chain reaction leading to many degenerative diseases (Rahman and Choudhary, 2001). Antioxidants prevent the undesirable oxidation by absorbing and neutralizing the free radicals, quenching singlet and triplet oxygen, or decomposing peroxides but the use of synthetic antioxidants like butylated hydroxytoluene and butylated hydroxyanisole (BHA) are restricted because of their carcinogenicity and other side effects (Gowri and Vasantha 2010). The quest for exploring the antioxidants from natural sources is of great interest in food, cosmetic and pharmaceutical industries to replace the synthetic preservatives with natural ones.

Phosphomolybdenum method was used for determining the antioxidant potential of plant extracts in this study. The assay determines the total antioxidant capacity and is based on the reduction of Mo(VI) to Mo(V) in presence of the antioxidant compounds and subsequent formation of a green phosphate/Mo(V) complex at acidic pH, which is measured at 695 nm by visible spectroscopy. The assay has been successful in the quantification of total antioxidant activity of vitamin E (Prieto et al., 1999; Kumaran and Karunakaran, 2006) and it was found efficient in determining the antioxidant potential of plant extracts (Lu Y and Foo LY 2001).

The culinary spices selected for this study revealed strong antioxidant potential. Among the spices tested, l. verum showed strongest activity; presence of flavonoids and phenolics might explain its free radical scavenging and antioxidant effects (Yang et al., 2012). The phenolic contents may directly contribute to the antioxidant action because of their radical scavenging ability due to presence of hydroxyl groups. They donate hydrogen to the free radicals and thus inhibit the chain reaction. They also act as singlet oxygen quenchers and decompose peroxides (Ozen et al., 2011). The antioxidant activity of C. zeylanicum was attributed to the presence of essential oils and polyphenolic compounds viz., cinnamaldehyde or cinnamic acid, eugenol, cinnamic acid mucilage, diterpenes and proanthocyanidins (Jayaprakash et al., 2002). Nickavar and Abolhassani (2009) screened antioxidant properties of seven Umbelliferae fruits and reported that among them P. anisum revealed strongest antioxidant potential and they found a positive correlation between flavonoid content and antioxidant activity. They have also reported antioxidant activity for C. cyminum. Flavonoids are responsible for the antioxidant potential of M. fragrans and its use in arteriosclerosis (Olaleye et al., 2006). The fruit of T. chebula possessed high antioxidant activity and phenolics were found to be responsible for this activity (Chang et al., 2010). The cardioprotective actions of T. chebula might be partially attributed to its antioxidant potential (Suchalatha et al., 2005). The antioxidant activity of N. sativa obtained was attributed to thymoquinone, which is a potent superoxide anion scavenger that inhibited iron-dependent microsomal lipid peroxidation (El'tahir et al., 1993, Yoruk et al., 2010).

Among the indigenous medicinal plants, Amaranthus gangeticus (leaf), Gloriosa superba, L. (Tubers) and Mangifera indica, L (seed kernel) revealed relatively strong antioxidant activity. A. gangeticus (leaf) exhibited greater activity than ascorbic acid (Table 3); higher amounts of vitamin C, carotenoids and phenolic compounds such as flavonoids might be the reason for such activities (Puravankara, 2000; Abdalla et al., 2007). Consequently, the antioxidant activities of plant/herb extracts were often explained by their total phenolics (Ruan et al., 2008). So the discrepancies in total phenolic and flavonoid content decide the antioxidant activity of the plant/spice. By virtue of their antioxidant potential, plants/spices with higher phenolics and flavonoids play a major role in the prevention of various pathological conditions such as cancer, cardiovascular and neurodegenerative diseases believed to be associated with oxidative stress (Losso et al., 2007).

CONCLUSION

The culinary spices tested in this study and indigenous plants like Amaranthus gangeticus (leaf), Gloriosa superba, L. (Tubers) and Mangifera indica, L (seed kernel) revealed strong antioxidant potential, so these plants/spices can be explored to obtain natural sources of antioxidants to alleviate the pathological conditions resulting from oxidative stress and also to replace the synthetic antioxidants, consequently eliminating the side effects caused by them. From the present study, it can be concluded that exploring the antioxidant nutraceuticals from culinary spices and indigenous plants for therapeutic purposes will be a viable option.

ACKNOWLEDGEMENT

Authors express deep sense of gratitude for A.Rama Krishna M.S.c., MPhil. Sr. Lecturer, Head of the Department of Botany, Vemulapalli Kodanda Ramaiah College, Buddhavaram, Gannavaram Mandal, Krishna District, Andhra Pradesh, India for authenticating the plant materials and authors are grateful to Dr. A. Gopa-
la Reddy for his support in preparation of the manuscript.

CONFLICT OF INTEREST

None

REFERENCES

Campbell IC, and Abdulla EM. Strategic approaches to in vitro neurotoxicology, in approaches and methods (1995),” Neurotoxicology, 495.

Delanty N, and Dichter M. Antioxidant therapy in neurologic diseases (2000),” Archives of Neurology, 57(9): 1265-1270.

Yoruk Ozgur, Fatma Ozabacigil Gur, Hamidullah Uyanik, Murat Yasar, Vahit Mutlu, Enver Altas, Elif Baysal, and Seyithan Taysi. Antioxidant Effects of Nigella Sativa in the Treatment of Experimentally Induced Rhinosinus-

Yu BP. Cellular defenses against damage from reactive oxygen species (1994),” physiol Rev, 74: 139.